AUTH：OR	van der Burg，Eeke；de Leeus，Ja
TITLE	Honiinear Redundancy Analysi5．Researen Report 53－1．
MSITIUTION	Erente Univ．，Enschede（iecherlaric．）．Depz．of Education．
Pue datc	Yar 88
NOTE	35p．
AVEILABEE ERGY	Sibliotheex，Depar＝ment of Ecucation，Universizy of Twente，P．O．Zoz 217． 7500 AE Enschede，The Hetheriands．
Pux TYPE	Reports－Evaiuative／Eeasibility（142）
EDPS PRICE	MFOI／こC02 P1us Postage．
DEscripicer	Hagorithms；Aztitude Meesures；Ccreputer Orientro Programs；＝Correlation：Eoreign Countries；sieast Scuares Statistics；Multivariate Anaiysis；Predictor Yariables；Statistical Anaigsis
IDEかTEEIER	Czsins（Compter Prosran）；Cancaicas Peduriancy Scajing：Parliauencarians；Emumpais Technicue： －Recurciancy Analysis

A3STRACT
I non－innear version of redurdancy anaiysis is introiuced．The technique is called rebitidiis．It is implemented within the computer procran for cancancal correlation anelysis calien CAKAIS．The REDUNDAiS algorithm is of an aleernating east square （ALS）type．The sechnigie is defined as minimization of a squarel distance betueen criterion vaicbies and reightef prejictor variables．With the help of cpimai scajing，the yariables are non－inneariy transtormed．An application of the sebinidids techncuie used data from a suryey conducted with members of the Dutin三arliament sho gave their cpinicns on seren issues and their preference votes for political parties．This exampie illustrates that the nom－iinear redundancy anaiysis corresponds to a miltivariate muleipie regression with opinai scaling．In the case of the jutch pariiamentary data，the REDUSDALS zesnits are mostiy comparabie inith the numerical CAiALS analysis．The programs are combined，but CAMAis finds darections in both sets of variables inat correlate marimaziy． independent of how mich variance is explained，wile zentminis explains as ruch wariance as possible in evezy criterion direction． Two tables provide information aboat the parijamentary study，and a figure illustrates the monotore transformations of the variables．A 33－itell list of references is inciaced．（SiD）

[^0]

Nonlinear Zedurciancy knalysis

Eeice zan der Burg
 juan ce Iequs

 POO24. T5

Nonlinear Redundancy Analysis / Eeke van der Surg \& Jan de Leeus - Enschede : University of Twente Department of Education. Marck. 1998. - 28 p.

Abstract

Abstract

A nonlinear jersion of redunciancy analysis is introduced. The Eecinique is called peDjubals. It is implesented within the computer prograu for canonical Correlation analysis callea Calleis (Van der Eurg \& De Leeus. 1983). The PEDU:iDAIS algorithm is of an alternãing least squares (ins) iype. The technique is defined as minimization of 3 scuazed distance between critezion variables and weighted predictor variables. Witin tie nelp of optimal scaling the variables are transformed noniineariy (cif. Young. 1981). An application of Etcunciancy analysis is prozidec.

Key words: redundancy analysis, cano:ice: cozieiation Entlysis, optimal scaling, nonlinea. transformetion.

Nonlinear Redurdancy Rnalysis

Introduction

In many situations data are available from difierent sources. Suppose the data are $0 \leq$ the form: objects x variables. and let us suppose tine data from one source cerresponci witn a subset of variables. In case two (suib)sets of variables are available a possible technique to relate ine sets to each other is canonicai corzeiation analysis (CCA). This vechnicue is described in many calinvariate analysis textiosoks (e.g. Tazsuoka. 1971. chap. 6:. Gnanadesixan. 1977. chap. 3.3). In
 a symeiric treatment is not always ratural. It also happens that it is clear from the data which variabies are predictors and winch ones are criterie. In suen cases redundancy ane:ysis (RE) is a possible iechnique.

The name reciurcianct analysis origimatus from Van den Nollenberg (1977). Blinough he sas the first one so name ine technique. it actualiyciates back from an eariier peziod. De Leevir (1986) discusses the historit of 踝. We briefly Sumarize iz. Еorsi (1955). Rao (1962). Sie:art \& Love (1968) and Glahn (1969) all propose the Redurdency Index. Reo (1964) and Robert \& Escoufier (1976) discuss technigues for decomposing this Redundancy index to uncorrelated componeats Fort. .I (1966) proposes 'simultaneous lisear pz dictions" mi=h is equisaleat wi=h RA (ct. Ten Eerge. 1985). Izenman (1975) and Dasies \& Tso (1982) also treat Ris. bit uncer the

REDUNDALS: redundancy analysis
name Reduced Rank Regression. So far the discussion of De Leeut (1986). Johansson (198i) proposes several forms of RA. which vary sith ortiogonality constraints. and DeSarbo (1981) disscusses a rechnique which is a mixture between CCA and RA. Jan de Geer (1984) places various ifpes of $\overline{2 \pm}$ in a larger framesork of $\%$ sets COA. Israèls (1986) treats RA witi various normalizazions and rotaiions. Yeulmen (1986. chap. 5.2.1) discusses a version of ki whici can be show to be a
 uses a completely difierent approach. fozmilating pis in terms of distances betmeen objects of indiziduais. We cope mill baci: to this later.

A nonlinear fersicn ct fit has been proposed by istaês (1984). Eis Eechnigue wikes $i=$ possible to incorporate qualitative variables D_{y} ine use of dumies". Also Veulman (1986. chap. 5.2.1) discusses a nomineaz version of 2\%. dealing xith raniables on an oziinal measurement level. in inis prper another feision of noalinear 23 is proposeci. it larger choice of measurement levels is possible for each vaミiable than in case of israêis (i934).

As the algorith for nonlinear reaundancy analysis shows many correspondences with tiee zigozithm for nonlinear CCE proposed by van der Eurg ? De Leere (1983). the computer program for nonlinezz PR. called REDHADAS. is eminoiced in the canonical correlation analysis prugram. calzed Canifls.

Redundancy analysis

Suppose tine daia consist of observations for n objects on m Jariables. and assume that the m variables can be difided into mo criterion variables and \boldsymbol{m}_{2} predictors. In adaition assume that each fariable is standardized. i.e. it has zero nean and unit variarie. Collect the criverion variables in the matrix H_{1} of dimensions ($\mathrm{X} \mathrm{m}_{1}$) and the prediccors in H_{2} ($n \times x_{2}$). The Recurciancy Index of Stewart \& Love (1968) is obeainec by a multi:iariate multipie regression of hi. the colums of g_{1}. ($\left.i=1 \ldots \ldots \mathrm{~m}_{\underline{1}}\right)$ on g_{2}. Thus

$$
\text { orez } b_{1} \ldots b_{z i} .
$$

were the reatco $b_{1}\left(\operatorname{Ha}_{2}\right.$ elemeats) consisis ci regressicn meights. The squared distazee on loss is diriced by a factoz תmi for the saie of comering ine various iecinagues. The matrix formilation of (I) is:

This expression is minimized
(3) $B=\left(\mathbf{E}_{2} \cdot \mathbf{H}_{2}\right)^{-1} \boldsymbol{I}_{2} \cdot \mathbf{E}_{1}$.
provided that $\mathrm{H}_{2} \cdot \mathrm{H}_{2}$ is of full rank. Substitution of (3) in (2) gives the minimum:

$$
\begin{equation*}
\operatorname{Er}\left(\mathrm{H}_{1} \cdot \mathrm{H}_{1}-\mathrm{B}_{1} \cdot \mathrm{H}_{2}\left(\mathrm{H}_{2} \cdot \mathrm{H}_{2}\right)^{-1} \mathrm{H}_{2} \cdot \mathrm{H}_{1}\right) / \Omega \pi_{1} \tag{4}
\end{equation*}
$$

Denoting $R_{1 i}$ for $H_{1} \cdot H_{i} / n$ and R_{12} and R_{22} for $H_{i} \cdot H_{2} / n$ and $\mathrm{H}_{2}{ }^{\circ} \mathrm{H}_{2} / n$ respectivelig. expression (4) is equivalent to
(5) $\quad 1-i=\left(R_{1} 2_{22} R_{R_{21}}\right) / s_{1}$.
 index of Sieware $\&$ Iove (1908). Thus Einimizing (1) co:responcis to coupring tie Reduncianciz Inciex.

Eowerer this is not tiae same as perfoming a =edunciancy analysis in tine sense of Van den Hollenberg (1977). He searches for (normalized) Eefghts that optimize the explained variance between criterion zarizbles and weighted precictors. These weigit veciors v (祖 eiemen*s) are eigenvectors of the matrix $R_{22}{ }^{-i} R_{21} R_{12}$. Denote the corresponding eigentalues bry y. Thea

Wen all vis are solved. the sum of eigenvalues ecuals the Redundancy Indez (cf. Israèls. 1934). In fact ue can see Van der Wolleniberg's analysis as a specialization of our minimization proslea (2). namely ine case in which tinere are rank restrictions on matix B. i.e. B=vi aith $V\left(\pi_{2} x=\right.$. w
$\left(m_{;} x r\right), 1 \leq r \leq m i n\left(m_{1}, m_{2}\right)$, and normalization constraints on V. i.e. $V \cdot R_{22} V=I$. Expression (2) is rewritten in terms of V and \% as foilows
(7) minimize $\operatorname{tr}\left(\mathrm{H}_{1}-\mathrm{H}_{2} \mathrm{VF}^{-}\right)^{\prime}\left(\mathrm{H}_{1}-\mathrm{H}_{2} \mathrm{VH}\right) / \mathrm{m}_{1}$ over V and H subject to the concition that $V^{-} \mathbf{R}_{22} \mathbf{V}=\mathbf{I}$.

Some computationai nork shows tinat the columns of v correspond to the vectors v discussed above. liote that Van den Wollenberg has the choice of r. i.e. bow many eigenvectors y will be computed. In our case automatically all zeights B are solved $\leq 0 r_{\text {. }}$ as this is implicit to the way (2) is formulated. Aithough (7) is more restrictive than (2). we can argue that formiation (7) is the more general one, as (7) can be soived for $r=\pi_{1}$ (assuming that $m_{1} \leq m_{2}$). and for lower values of r.

Expression (1) also shous the relation between reduced rank regression and redundancy analysis. as reauced rank regressivn corresponds to (7) with seall r (c.f. De Leeur. Kcoijaart \& Van cier Leeden. 1985). To recognize other forms of PA it is necessary to formulate expression (7) in a different way. Define matrix $X(n \times r)$ as $H_{2} V$. Ther we get
(8) ainimize $\left\{t=\left(x-z_{2} V\right)^{\prime}\left(x-Z_{2} V\right)+\operatorname{tr}\left(E_{1}-x W^{\prime}\right) \cdot\left(E_{1}-x H^{*}\right)\right\} / n m_{1}$
orer X. V and W. subject to the conditions that

$$
x=H_{2} v \text { and } R_{x x}=I .
$$

Matrix $R_{x x}$ is equal to $X \times X / r$. Meulman (1986. chap. 5.2.1) discusses the minimization of the loss as formulated in (8). subject to the condition that only $R_{x x}=T$. Thus X does not have to be in the column space of H_{2}. De Lpeuw \& Bijleveld (1987) deal with the same loss function. but they use the condition $R_{x x}=\alpha^{2}$, where α is a parameter. They show that different values of α correspond to various multivariate techniques. e.g. $\alpha=0$ boils down to principal component analysis (PCA). and $\alpha \rightarrow \infty$ corresponds to reduced rank regression.

Optimal scaling

In many ways nonlinear transformations can be implemented in redundancy analysis. To do so Israëls (1984) employed dummies for variables measured on a nominal measurement level. Meulman (1986, chap. 5.2.1) uses monotone regression in her version of nonlinear RA. Monotone regression is a form of optimal scaling (cf. Young, 1981). This means that the transformations (scaling parameters) minimize the loss. and at the same time measurement restrictions are maintained. We also use optimal scaling. The nonlinear transformations treated in this article are nominal and ordinal (a definition will follow). In addition, of course. linear or numerical transformations are dealt with. 'Dummy transformations'. as

12
employed by Israëls (1984), are not discussed, however they can always be obtained by simply coding variables as dummies. and. in addition, by treating these dumaies numerically. Another way to obtain these 'dumm transformations' is by using copies of a variable within the correrponding set. and by treating these copies as nominal. This gives a mitiple nominal (or dumy) transfomation (cf. Gifi. 1931. chap. 5.2.7). Using copies instead of dumuies has the advantage that one may choose both the dimensionality of the transformation and the measurement level of each copy separately. More information about copies can be found in De Leeuw (1984) and Van der Burg \& De Leeus (1987).
the nominal. ordinal and numerical transformations employed in this article agree with the transformations used by Van der Burg \& De Leeuk (1983) in their yersion of nonlinear CCA (CANALS). Tcgether these three transformations form the optimal scaling. Our definition of optimal scaling corresponds to the definition of Young (1981). He mentioned already that optimal scaling refers to the sact that variables are optimally scaled in the sense of the model. This means that the data matrices H_{1} and g_{2} are replaced by parameter matrices $Q_{1}\left(n \times m_{1}\right)$ and $Q_{2}\left(\Omega \times m_{2}\right)$ such that they optimize the model. i.e. minimize the original loss. but at the same time satisfy the meastrement restrictions. The original loss was formulated in (2). If the parameter matrix Q_{1} is subsituted for H_{1} and Q_{2} for H_{2}. this expression can be rewritten as follows. Denote the set of possible transformations for the ith variable. i.e. ith colum of

$G_{i} \in G_{i}\left(i=\sum \ldots \ldots .\right.$.

 discus.nec zere correspond to the secomixit zqproan of

 colmus of tise daia mizi=ix was suposed. it mose exiensixy

纺 1 那 ser

 Se Eneva（15玉3）．

路家
 с

4 - "

 A x

Abstract

Fw

 34㫛

 3 m

\qquad

 zarre

 Sy

人 "品 - .

 20，

雨

保

 -

 - \} 中 -

 שר

STre －

 ำ

 －

is＂tse zevinutis化 －

м आ Se?

人

 caxen oriver

 यू

 =xile

De Eetur. 3. (1977) 5ozmijzed cope vegressicm. Tairersizy of

De Beear. J. (Igen). On the hiswory of recmotact antisis. Tonxersi=? of

 regressicn mofels 3T alvermating least scoures. Eni-

 Fixec farmor x=cie mojeis wixh limear restrictions.
 CB .
 sis. Ps,

Forien. 3.3. (1966). Simintzerss linear prediction.

 Of Iezien. Separiment of Data Theory. In Fress. ieiden: NSWO Zress.

REDONDALS: redundancy analysis

Gnanadesikan. R. (1977). Fethods for Statistical Data Analysis of Mitivariat $=$ Observations. We; York: Wiley.

Eorst. R. (1955). A technigte for the developrent of a multiple absolute prediction battery. Psychological Monographs, 69. no 5. $i-22$.

Israēls. A.2. (1984). Redundancy analysis for qualitative yariables. Psychoretrika, 31, 369-381.
israêls. A.Z. (1983). Interpretation of redundancy anaiysis: rotated vs. unrotated solutions. Applied Stochastic Iodels and Data Analysis, 2, 121-130.

Izerman. A.J. (1975). Reaurea-rank regression for the multivariate limear model. Journal of heltivariate Analysis, 5, 248-264

Johansson. J.Z. (1981). An extension of Wollenberg's reduncanct analysis. ersychometrika, 46. 93-104.

Eruskal. J.D. and Shephard. R.N. (1974). A nonmetric variety of linear factor analysis. Psjchometrika, 39, 123-157.

Kumfeld. M.F . Young. P. M. and Kent. D.P. (1987). New developenents is psychometric ain market research procedures. in sUGI Prnceedings. Cary. NC: SAS Institate.

Yeulnan. J. (i986). A Distance Approach to Nonlinear Multiwariate Analysis. Leiden: DSWO Press.

Rao. C.R. (1962). Ose of discriminant and allied functions in multifariate analysis. Sankya A, 24. 149-154.

Rao. C.R. (1964). The use and interpretation of principal components analfsis in applied researcin. Sankya 4, 26, 329-358.

Robert. P. \& Escoufier. Y. (1976). A unifying tool for linear multivariate statistical wethods: the RY-coefficient. Applied Statistics, 25. 257-265

Stewart. D. and Love. W. (i968). A general canonical correlation index. Psycholgical Bulletin, 70, 160-163.

Tatsuoka. M.M. (1971). Hultivariate Analysis: Technigues for Educational and Psychological Research. New Yors: Mileq.

Ten Berge. J.M.F. (1985). On the relationsinip between Fortier's simultaneous linear predition and Van den Wollenberg's redundancy analysis. ?sychowetriza, 50, 121-122.

Van de Geer. J.P. (1984). Linear relations between \dot{z} sets of variables. Psychometrika. 49. 79-94.

Van den Wollenberg. A.I. (1977). Redunciancy analysis: an alternative for canonical correlation analysis. Psychometrika, 42, 207-219.

Van der Burg . E. and De Leeus. J. (i983). Non-linear canonical correlation. British journal of Hathematical and Statistical Psychlogy. 36. 54-80.

Van der Burg . E. and De Leeuiv. J. (1987). Nonlinear canonical correlation analysis with k sets of variabies. University of Twente: Department of Education. RR-87-8. Submitted for publication.

Van der Burg . E.. De Leeuw. J. and Verdegeal. R (1986). Homogeneity analysis with k sets of variables: an alternating least squares method with optimal scaling features. University of Twente: Depertwent of Education. RR-86-5. To appear in Psychometrika

 Psychames=ixa. 45. 24is-35x.

 und the mecanily

```
SEV: Sexre3rroner eB4
```



```
    emumerer
```



```
    \0%40305
```



```
    *)
```



```
    Smbur=% 
TET: stecer:jom
```



```
EF: beEamoe
```



```
13. erowerretExes
```


 (=xans)

	EES	2 Sz	Ena	2x\%	Pat	- 5	IES
FE	4×2	248	$3{ }^{3}$	fids	2	318	5 x
2-55	$5{ }^{5}$	- HITL	Tix	-	- $\mathrm{is}=$	-8	TE
3 LTP	0102	36	- z^{2}	-	- 玉玉s	\pm	- \#8\%
4	- 30	4.25	- Ex	T3:	- int	TES	- -
310	- \$5F	-	- Ez	3	$4{ }^{*}$	-	- 8.5

 $2=$

 37exaxez

31

32

 Tow, Devituranine

73-4	mase:
-	ㅋํ표
3n-53-3	
32-5\%	
3-5-5-3	Ex
3x-5-2	
3-50-	
或-25-書	
2x-85-32	TH x =

18:

 Tartiterane:

2:
t

I

[^0]: $=$

